
User Guide for AMR Self-Gravity Code Code

Dan Martin and Phil Colella and Francesco Miniati

Applied Numerical Algorithms Group

October 17, 2005

1 Overview

The AMR Self-Gravity code implements the algorithm described in [2, 3]
using the AMRTimeDependent infrastructure in the Chombo library package.

2 Obtaining and compiling the code

The AMR Self-Gravity code may be obtained from the ANAG NASA CAN
website (http://davis.lbl.gov/NASA); using the code also requires the
Chombo framework [1]. The Chombo framework also uses HDF5 for I/O.

To compile the code, first install the HDF5 and Chombo libraries accord-
ing to the instructions in each package. Change to
Chombo/example/AMRSelfGravity/exec . Finally, compile the code: make

all [DIM=<2,3>] [DEBUG=<TRUE,FALSE>] with “DEBUG=FALSE” produc-
ing optimized code.

An executable of the form amrGodunov<DIM>d.<config-string>.ex is
produced, where the <config-string> contains information about how the
code was compiled.

3 Running the code

To run the code, type amrGodunov<DIM>d.<config-string>.ex <inputs-file>

, where inputs-file is a file containing the parameters needed to specify
the run parameters.

1

3.1 Inputs file options

The format for the inputs file is generally of the form <group>.<variable> =

<value(s) > , where <group> generally indicates what part of the code uses
a given input. Everything following a “#” on a line is ignored, and in the case
of multiple instances of a variable in an inputs file, the last instance is used. A
sample inputs file is in Chombo/example/AMRSelfGravity/exec/selfGravity.inputs.

Some input parameters are required, while others have default values if
they are not specified in the inputs file. Required variables are listed first,
followed by optional ones.

3.1.1 Input parameters for main

• charm.problem (required) string – name of problem type to solve. Cur-
rent implemented problems are “dustcollapse”, “gastests”, or “ramp”.

• charm.max_step (required) integer – maximum number of timesteps
to compute.

• charm.max_time (required) Real – maximum solution time to compute
to.

• charm.num_cells (required) SpaceDim integers – number of cells in
each direction in the base computational domain.

• charm.ref_ratio (required) max_level integers (one for each level).
refinement ratios between levels. First number is ratio between levels
0 and 1, second is between levels 1 and 2, etc.

• charm.regrid_interval (required) max_level integers (one for each
level) – number of timesteps to compute between regridding. A Nega-
tive value means there will be no regridding.

• charm.normal_predictor (required) string (either “PPM” or “PLM”)
– if this is “PPM”, use the piecewise parabolic method (PPM) for
the hyperbolic normal predictor. If “PLM”, use the Piecewise linear
method (PLM).

• charm.use_prim_limiting (required) integer. If 1, limit slopes in
primitive variables.

2

• charm.use_char_limiting (required) integer. If 1, do slope limiting
using characteristic variables. Only one of prim_limiting or char_limiting
may be turned on, or no limiting at all may be used.

• charm.block_factor (required) integer – the block factor is the num-
ber of times that grids will be coarsenable by a factor of 2. This can
have implications on how efficiently multigrid solvers work. A higher
number produces “blockier” grids.

• charm.max_grid_size (required) integer – the largest allowable size of
a grid in any direction. Any boxes larger than that will be split up to
satisfy this constraint.

• charm.fill_ratio (required) Real between 0 and 1. – the efficiency of
the grid generation process. Lower number means that more extra cells
which aren’t tagged for refinement wind up being refined along with
tagged cells. The tradeoff is that higher fill ratios lead to more compli-
cated grids, and the extra coarse-fine interface work may outweigh the
savings due to the reduced number of fine-level cells.

• charm.max_dt_growth (required) Real – maximum factor by which the
timestep can increase from one timestep to the next.

• charm.dt_tolerance_factor (required) Real – Let the time step grow
by this factor above the ”maximum” before reducing it

• charm.bc_lo (required) SpaceDim integers – integers specifying the
type of boundary conditions to use on the low side in each direction:
0 is Dirichlet, 1 is Neumann, 2 is infinite-domain boundary conditions,
and 3 is Gauss BC’s. Note that Gauss BC’s are based on Gauss’s theo-
rem are implemented specifically for sperically symmetric mass distri-
butions.

• charm.bc_hi (required) SpaceDim integers – integers specifying the
type of boundary conditions to use on the low side in each direction:
0 is Dirichlet, 1 is Neumann, 2 is infinite-domain boundary conditions,
and 3 is Gauss BC’s. Note that Gauss BC’s are based on Gauss’s theo-
rem are implemented specifically for sperically symmetric mass distri-
butions.

3

• charm.verbosity (default = 0) integer – higher number results in more
verbose text output.

• charm.gamma (default = 1.667) Real – ratio of specific heats.

• charm.Rs_tolerance (default = 1.0e-6) Real – tolerance for error in
Riemann solver.

• charm.max_rs_iter (default = 10) integer – maximum number of it-
erations in the Riemann solver.

• charm.max_mach (default = 50) Real – Threshold for switch from en-
ergy to entropy conservation equation.

• charm.artificial_viscosity (default = 0.0) Real – Artificial viscos-
ity (0 means no artificial viscosity is used).

• charm.domain_length (default = 1.0) Real – physical size of the longest
dimension of the domain.

• charm.is_periodic (default = 0’s) SpaceDim integers. In each coor-
dinate direction, if 1, domain is periodic in that direction; if 0, non-
periodic.

• charm.max_level (default = 0) integer – finest allowable refinement
level. 0 means there will be no refinement.

• charm.tag_buffer_size (default = 3) integer – amount by which to
grow tags (as a safety factor) before passing to MeshRefine.

• charm.max_init_ref_level (default = 0) integer – maximum level at
initial startup.

• charm.use_gradient_refine (default = 0) integer – tag on undivided
relative gradients (∆x

Avg(φ)
∂φ

∂x
) for regridding.

• charm.grad_refine_thresh (default = 100) Real – threshold number
for tagging cells for refinement based on gradients.

• charm.grad_var_interv (default (0,0) 2 integers – interval of compo-
nents in state vector to use for tagging based on gradient.

4

• charm.use_shock_refine (default = 0) integer – tag on shocks (pres-
sure jumps) for regridding.

• charm.pres_jump_thresh (default = 0) Real – threshold number for
tagging cells for refinement based on pressure jumps.

• charm.use_over_dense_refine (default = 0) integer – tag on over-
dense regions.

• charm.cell_mass_thresh (default = 100) Real – threshold for use
with overdense tagging.

• charm.use_jeans_refine (default = 0) integer – tag on Jeans length

• charm.jeans_resol_thresh (default = 4) Real – lowest resolution
threshold for use with Jeans length tagging.

• charm.use_fourth_order_slopes (default = 1) integer. If 1, use
4th-order slopes for the normal predictor, Otherwise, use second-order
slopes.

• charm.use_flattening (default = 1) integer – If 1, do slope flattening.

• charm.use_artificial_viscosity (default = 1) integer – if 1, use
artificial viscosity.

• charm.artificial_viscosity (default = 0.1) Real – artificial viscos-
ity.

• charm.cfl (default = 0.8) Real – CFL number (maximum allowable
value for max(vel)*dt/dx.

• charm.initial_cfl (default = 0.1) Real – safety factor to multiply
the initial timestep by.

• charm.force_stencil (default = 0) integer – Typeof stencil to use:
0 = 2 points, 1 = 4 points, 2 = 10 points. Note that the four-point
stencil is not supported by the coarse-fine interpolation operators, so
the 4-point stencil may not be used for AMR computations.

• charm.use_delta_phi_corr (default = 0) integer – use correction for
∆φ.

5

• charm.checkpoint_interval (default = 0) integer – number of timesteps
between writing checkpoint files. Negative number means that check-
point files are never written, 0 means that checkpoint files are written
before the initial timestep and after the final one.

• charm.plot_interval (default = 0) integer – number of timesteps be-
tween writing plotfiles. Negative number means that plotfiles are never
written, 0 means that plotfiles are written before the initial timestep
and after the final one.

• charm.plot_prefix (default = “pltstate”) string –

• charm.chk_prefix (default = “chk”) string –

• charm.fixed_dt (default = -1) Real – if positive, code will use this
value for the timestep.

• charm.fixed_hierarchy string – If this is present in the inputs file,
code will run with a fixed AMR hierarchy specified in the string argu-
ment.

• charm.restart_file string – If this is present in the inputs file, the
code will restart from the file specified in the string argument.

3.1.2 Dust-collapse Problem-specific inputs

Different values for problem in the inputs file will require different specific
input specifications to define the problem. The “dustcollapse” problem has
these additional inputs:

• charm.cloud_radius (default = 0.5) Real – Initial radius of dust cloud.

• charm.cloud_density (default = 1.0) Real – Initial density of dust
cloud.

3.1.3 gastests Problem-specific inputs

The “gastests” problem has these additional inputs:

• charm.gas_test (required) string – Type of test to run; can be “ex-
plosion” or “wave”.

6

• charm.shock_mach (default = 10.0) Real – Mach number of explosion
test problem.

• charm.size (default = 0.25) Real – size of explosion.

• charm.center (default = zeros) SpaceDim Reals – center of initial
condition for explosion or wave problem.

• charm.velocity (default = zero) SpaceDim Reals – initial velocity of
the gas.

3.1.4 ramp Problem-specific inputs

The “ramp” problem has these additional inputs:

• charm.angle_deg (default = 30.0) Real – angle of ramp.

• charm.shock_mach (default = 10.0) Real – initial magnitude of shock.

• charm.xcorner (default = 0.1) Real – location of left-corner of ramp.

3.2 Visualizing the results

If charm.plot_interval is non-negative, the AMR Self-Gravity code will
write solutions out into HDF5 plotfiles, which are in the format used by the
ChomboVis visualization tool.

References

[1] P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Ap-
plications - Design Document. unpublished, 2000.

[2] Dan Martin and Phil Colella. Self-gravity amr algorithm specification.
available at http://davis.lbl.gov/NASA, 2004.

[3] F. Miniati and P Colella. Block structured adaptive mesh and time re-
finement for hybrid, hyperbolic, and N-body systems. in preparation.

7

